

Yearly Energy Yield

The yearly energy yield based on the calculation (simulation using TRNSYS) of the yearly collector energy within a reference system for domestic hot water. The system dimension is designed for a 4 people household. The calculation is done for aperture areas of 3, 4, 5 and 6 m² and reference weather data for Würzburg (Germany).

Manufacturer	Vaillant GmbH
Brand	VFK 155 V
All values are related to TÜV Report:	21219030::: (Measurement of performance)

Collector parameter: (based on aperture area of 2:352 m²)							
η_0	0.850		K _d	0.92	(K _{b(51:6°)})		
a ₁	3.770	W/(m ² K)	K _{b(50°)}	0.93	*		
a ₂	0.015	W/(m ² K ²)	C _{eff}	6.26	kJ/(m ² K)		

Reference System:				
Roof orientation	South; elevation equal to latitude			
Collector loop	Inlet and outlet pipe each 15m, DN 16, Insulation thickness 25 mm λ =0,04 W/(mK), half length inside and half outside			
Storage tank	Volume 300l, Heat loss capacity rate 2,2 W/K; Ambient temp inside 15°C; Stand by volume 135 l; set point 60°C; stratification rate 100; effective axial conductivity 2*λ _{Waterr}			
Heat exchanger	Immersed heat exchanger, $(UA)_{hx}=9W/(m^2K)^*Aperture$ area $^*\Theta^{0.6}$; $(\Theta=\text{mean value between hx-inlet-temperature})$ and local storage temperature)			
Domestic hot water consumption	200I/day (7 ⁰⁰ : 80I; 12 ⁰⁰ : 40I; 19 ⁰⁰ :80I); Cold water temperature 10 °C; domestic hot water 45 °C			
	Yearly energy consumption: 2936 kWh/a			

Simulation Results: (energy gain just for collector array without pipe or store losses)							
Aperture area:	3	4	5	6			
Würzburg	626	567	511	459			
(1212 kWh/(m²a))							